题目内容
先化简,再求值
,其中.
,其中,.
在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随点P的位置变化而变化.
(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是_________, CE与AD的位置关系是____________________;
(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理).
(3) 如图4,当点P在线段BD的延长线上时,连接BE,若,求四边形ADPE的面积.
下列四组线段中,可以构成直角三角形的是( )
A. 6,7,8 B. 1,2,5 C. 6,8,10 D. , ,
如图,点A在函数y=(x>0)的图象上,点B在函数y=(x>0)的图象上,且AB∥x轴,BC⊥x轴于点C,则四边形ABCO的面积为( )
A. 1 B. 2 C. 3 D. 4
﹣2的相反数是( )
A. 2 B. C. ﹣ D. ﹣2
________.
我校七年级有个班,采用淘汰制进行足球赛,共需进行( )场比赛.
A. B. C. D.
观察下面的一列数,按这种规律在横线上填上恰当的数:,________
在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(3,0),直线y=kx﹣3经过B、C两点.
(1)求k的值既抛物线的函数表达式;
(2)如果P是线段BC上一点,设△ABP、△APC的面积分别为S△ABP、S△APC,且S△ABP:S△APC=2:3,求点P的坐标;
(3)设⊙Q的半径为1,圆心Q在抛物线上运动,则在运动过程中是否存在⊙O与坐标轴相切的情况?若存在,求出圆心Q的坐标;若不存在,请说明理由,并探究:若设⊙Q的半径为r,圆心Q在抛物线上运动,则当r取何值时,⊙Q与两坐标轴同时相切?