题目内容
【题目】如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.
(1)求证:AD=AE;
(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.
【答案】(1)证明见解析;(2)直线OA垂直平分BC.理由见解析.
【解析】试题分析:(1)根据AAS推出△ACD≌△ABE,根据全等三角形的性质得出即可;
(2)证Rt△ADO≌Rt△AEO,推出∠DAO=∠EAO,根据等腰三角形的性质推出即可.
试题解析:(1)证明:∵CD⊥AB,BE⊥AC,
∴∠ADC=∠AEB=90°,
△ACD和△ABE中,
∵
∴△ACD≌△ABE(AAS),
∴AD=AE.
(2)猜想:OA⊥BC.
证明:连接OA、BC,
∵CD⊥AB,BE⊥AC,
∴∠ADC=∠AEB=90°.
在Rt△ADO和Rt△AEO中,
∵
∴Rt△ADO≌Rt△AEO(HL).
∴∠DAO=∠EAO,
又∵AB=AC,
∴OA⊥BC.
练习册系列答案
相关题目