题目内容
已知△ABC为等边三角形,△BCD为等腰三角形,∠BDC=120°,E、F分别为AB和AC上任一点,且∠EDF=60°,DG⊥EF,求证:△BED≌△GED.
考点:全等三角形的判定
专题:证明题,几何综合题
分析:如图,延长AB到N,使BN=CF,连接DN,求出∠FCD=∠EBD=∠NBD=90°,根据SAS证△NBD≌△FCD,推出DN=DF,∠NDB=∠FDC,求出∠EDF=∠EDN,根据SAS证△EDF≌△EDN,推出BD=GD.从而证得结论.
解答:证明:如图,延长AB到N,使BN=CF,连接DN,
∵△ABC是等边三角形,
∴∠ABC=∠ACB=60°,
∵△DBC是等腰三角形,∠BDC=120°,
∴∠DBC=∠DCB=30°,
∴∠ACD=∠ABD=30°+60°=90°=∠NBD,
在△NBD和△FCD中,
,
∴△NBD≌△FCD(SAS),
∴DN=DF,∠NDB=∠FDC,
∵∠BDC=120°,∠EDF=60°,
∴∠EDB+∠FDC=60°,
∴∠EDB+∠BDN=60°,
即∠EDF=∠EDN,
在△EDN和△EDF中,
,
∴△EDN≌△EDF(SAS),
∴BD=DG,
在Rt△EBD与Rt△EGD中,
,
∴Rt△EBD≌Rt△EGD(HL).
∵△ABC是等边三角形,
∴∠ABC=∠ACB=60°,
∵△DBC是等腰三角形,∠BDC=120°,
∴∠DBC=∠DCB=30°,
∴∠ACD=∠ABD=30°+60°=90°=∠NBD,
在△NBD和△FCD中,
|
∴△NBD≌△FCD(SAS),
∴DN=DF,∠NDB=∠FDC,
∵∠BDC=120°,∠EDF=60°,
∴∠EDB+∠FDC=60°,
∴∠EDB+∠BDN=60°,
即∠EDF=∠EDN,
在△EDN和△EDF中,
|
∴△EDN≌△EDF(SAS),
∴BD=DG,
在Rt△EBD与Rt△EGD中,
|
∴Rt△EBD≌Rt△EGD(HL).
点评:本题考查了等边三角形性质和判定,等腰三角形的性质,三角形的内角和定理,全等三角形的性质和判定的综合运用,题目综合性比较强,有一定的难度,但是证明过程类似.
练习册系列答案
相关题目