题目内容

【题目】如图,抛物线y=﹣x2+3x+4交x轴于A、B两点(点A在B左边),交y轴于点C.

(1)求A、B两点的坐标;

(2)求直线BC的函数关系式;

(3)点P在抛物线的对称轴上,连接PB,PC,若PBC的面积为4,求点P的坐标.

【答案】(1)A、B两点坐标为(﹣1,0)和(4,0);(2)直线BC的函数关系式为y=﹣x+4;(3)点P的坐标为()或().

【解析】

试题分析:(1)令y=0得﹣x2+3x+4=0解得方程的解即为A、B两点坐标;(2)令x=0,解得抛物线y=﹣x2+3x+4与y轴交点C的坐标,设直线BC的函数关系式y=kx+b,解得k和b的值即可得出直线BC的函数关系式; (3)求得抛物线y=﹣x2+3x+4的对称轴,设对称轴与直线BC的交点记为D,求得D点坐标,设点P的坐标,表示出PD,再根据三角形的面积公式得出点P的坐标.

试题解析:

(1)由﹣x2+3x+4=0解得x=﹣1或x=4,

所以A、B两点坐标为(﹣1,0)和(4,0);

(2)抛物线y=﹣x2+3x+4与y轴交点C坐标为(0,4),由(1)得,B(4,0),

设直线BC的函数关系式y=kx+b,

解得

直线BC的函数关系式为y=﹣x+4;

(3)抛物线y=﹣x2+3x+4的对称轴为x=

对称轴与直线BC的交点记为D,则D点坐标为().

点P在抛物线的对称轴上,

设点P的坐标为(,m),

PD=|m﹣|

SPBC=OBPD=4.

×4×|m﹣|=4,

m=或m=

点P的坐标为()或().

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网