题目内容
如图所示,AB,AC是⊙O的弦,AD⊥BC于D,交⊙O于F,AE与⊙O的直径,试问两弦BE与CF的大小有何关系,说明理由.分析:要探讨两条弦的关系,根据等弧对等弦可以转化为探讨所对的弧的关系,根据等弧所对的圆周角相等,可以再进一步转化为探讨所对的圆周角的关系.根据已知条件,只需利用等角的余角相等就可证明.
解答:解:BE=CF,
理由:
∵AE为⊙O的直径,AD⊥BC
∴∠ABE=90°=∠ADC
∵∠AEB=∠ACB(同弧所对的圆周角相等),
∴∠BAE=∠CAF(等角的余角相等)
∴
=
∴BE=CF.
理由:
∵AE为⊙O的直径,AD⊥BC
∴∠ABE=90°=∠ADC
∵∠AEB=∠ACB(同弧所对的圆周角相等),
∴∠BAE=∠CAF(等角的余角相等)
∴
BE |
CF |
∴BE=CF.
点评:此题综合运用了等角的余角相等、圆周角定理和等弧对等弦.
练习册系列答案
相关题目