题目内容
【题目】如图1所示,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.
(1)若|x+2y-10|+|2x-y|=0,试分别求出1秒钟后△AOB的面积;
(2)如图2,所示,设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;
(3)如图3所示,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,设∠AGH=α,∠BGC=β,试探究出α和β满足的数量关系并给出证明.
【答案】(1)1秒钟后△AOB的面积=4;(2)点A、B在运动的过程中,∠P的大小不变,∠P=45°,理由见解析;(3)α=β,理由见解析.
【解析】
(1)解二元一次方程组求出x、y,得到OA、OB的长,根据三角形的面积公式计算,得到答案;
(2)根据角平分线的定义得到∠PAB=∠EAB,∠PBA=∠FBA,根据三角形内角和定理计算即可;
(3)作GM⊥BF于点M,根据三角形的外角性质、直角三角形的性质计算.
(1)由题意得,,
解得, ,
由题意得,1秒钟后OA=2,OB=4,
则1秒钟后△AOB的面积= ×2×4=4;
(2)点A、B在运动的过程中,∠P的大小不变,∠P=45°,
理由如下:∵∠AOB=90°
∴∠OAB+∠OBA=90°
∴∠EAB+∠FBA=270°,
∵AP平分∠EAB,
∴∠PAB=∠EAB,
同理,∠PBA=∠FBA,
∴∠PAB+∠PBA=(∠EAB+∠FBA)=135°,
∴∠P=180°-135°=45°;
(3)α=β,
理由如下:作GM⊥BF于点M,
∠AGH=90°- ∠EAC
=90°- (180°-∠BAC)
= ∠BAC,
∠BGC=∠BGM-∠CGM
=90°-∠ABC-(90°-∠ACF)
= (∠ACF-∠ABC)
= ∠BAC
∴∠AGH=∠BGC,即α=β.
【题目】弹簧挂上物体后会伸长,若一弹簧长度(cm)与所挂物体质量(kg)之间的关系如下表:
物体的质量(kg) | 0 | 1 | 2 | 3 | 4 | 5 |
弹簧的长度(cm) | 12 | 12.5 | 13 | 13.5 | 14 | 14.5 |
则下列说法错误的是( )
A.弹簧长度随物体的质量的变化而变化,物体的质量是自变量,弹簧的长度是因变量
B.如果物体的质量为x kg,那么弹簧的长度y cm可以表示为y=12+0.5x
C.在弹簧能承受的范围内,当物体的质量为7kg时,弹簧的长度为16cm
D.在没挂物体时,弹簧的长度为12cm