题目内容
如图所示,直线a经过正方形ABCD的顶点A,分别过顶点D、B作DE⊥a于点E、BF⊥a于点F,若DE=4,BF=3,则EF的长为_______.
如图是一个长方体包装盒,则它的平面展开图是
A. B. C. D.
先阅读材料,再根据材料中所提供的方法解答下列问题:
我们在求1+2+3+…+99+100的值时,可以用下面的方法:
我们设S=1+2+3+…+99+100①,那么S=100+99+98+…+3+2+1②.
然后,我们由①+②,得2S=(100+1)+(99+2)+(98+3)+…+(99+2)+(100+1),共100个101.
2S=101+101+101+…+101=100×101,
所以S=100×101÷2=5050.
依据上述方法,求下列各式的值:
(1)1+3+5+…+97+99;
(2)5+10+15+…+195+200.
(问题情境)
如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.
(探究展示)
(1)直接写出AM、AD、MC三条线段的数量关系: ;
(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.
(拓展延伸)
(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.
如图所示,在ΔABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF,给出下列条件:①BE⊥EC;②BF∥EC;③AB=AC.从中选择一个条件使四边形BECF是菱形,你认为这个条件是____(只填写序号).
如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为( )
A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b
随着科技进步,无人机的应用越来越广,如图1,在某一时刻,无人机上的探测器显示,从无人机A处看一栋楼顶部B点的仰角和看与顶部B在同一铅垂线上高楼的底部C的俯角.
(1)如果上述仰角与俯角分别为30°与60°,且该楼的高度为30米,求该时刻无人机的竖直高度CD;
(2)如图2,如果上述仰角与俯角分别为α与β,且该楼的高度为m米.求用α、β、m表示该时刻无人机的竖直高度CD.
王英同学从A地沿北偏西60°方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地( )
A. m B. 100m C. 150m D. m
已知=+,则实数A=_____.