题目内容

【题目】如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.

(1)请用配方法求二次函数图象的最高点P的坐标;

(2)小球的落点是A,求点A的坐标;

(3)连接抛物线的最高点P与点O、A得POA,求POA的面积;

(4)在OA上方的抛物线上存在一点M(M与P不重合),MOA的面积等于POA的面积.请直接写出点M的坐标.

【答案】(1)最高点P的坐标为(2,4);(2)点A的坐标为();(3)(4)点M的坐标为().

【解析】

试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;

(2)联立两解析式,可求出交点A的坐标;

(3)作PQx轴于点Q,ABx轴于点B.根据SPOA=SPOQ+S梯形PQBA﹣SBOA,代入数值计算即可求解;

(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得MOA的面积等于POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.

试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,

故二次函数图象的最高点P的坐标为(2,4);

(2)联立两解析式可得:,解得:,或

故可得点A的坐标为();

(3)如图,作PQx轴于点Q,ABx轴于点B.

SPOA=SPOQ+S梯形PQBA﹣SBOA

=×2×4+×(+4)×(﹣2)﹣××

=4+

=

(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则MOA的面积等于POA的面积.

设直线PM的解析式为y=x+b,

P的坐标为(2,4),

4=×2+b,解得b=3,

直线PM的解析式为y=x+3.

,解得

点M的坐标为().

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网