题目内容

(2013•增城市二模)如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和是
3
3
分析:首先证明△ABC是等边三角形.则△EDC是等边三角形,边长是2.而
BE
和弦BE围成的部分的面积=
DE
和弦DE围成的部分的面积.据此即可求解.
解答:解:连接AE,OD、OE.
∵AB是直径,
∴∠AEB=90°,
又∵∠BED=120°,
∴∠AED=30°,
∴∠AOD=2∠AED=60°.
∵OA=OD
∴△AOD是等边三角形,
∴∠OAD=60°,
∵点E为BC的中点,∠AEB=90°,
∴AB=AC,
∴△ABC是等边三角形,边长是4.△EDC是等边三角形,边长是2.
则∠BOE=∠EOD=60°,
BE
和弦BE围成的部分的面积=
DE
和弦DE围成的部分的面积.
故阴影部分的面积=S△EDC=
3
4
×22=
3

故答案为:
3
点评:本题考查了扇形面积的计算及等边三角形的面积的计算,证明△EDC是等边三角形,理解
BE
和弦BE围成的部分的面积=
DE
和弦DE围成的部分的面积是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网