题目内容
在一个不透明的口袋中有颜色不同的红、白两种小球,其中红球3只,白球n只,若从袋中任取一个球,摸出白球的概率为,则n= .
请你阅读下面的诗句:“栖树一群鸦,鸦数不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗句中谈到的树为______棵.
若关于x的一元二次方程ax2+bx+c=0的一个根是1,且a,b满足b=++3,求c.
下列方程属于一元二次方程的是( )
A. B. x(x﹣1)=y2 C. 2x3﹣x2=2 D. (x﹣3)(x+4)=9
一个口袋中有3个大小相同的小球,球面上分别写有数字1、2、3.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.
(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;
(2)求两次摸出的球上的数字和为偶数的概率.
经过某十字路口的汽车,可能直行,也可能左转或者右转.如果这三种可能性大小相同,那么经过这个十字路口的两辆汽车一辆左转、一辆右转的概率是( )
A. B. C. D.
“抛一枚均匀硬币,落地后正面朝上”这一事件是【 】
A.必然事件 B.随机事件 C.确定事件 D.不可能事件
如图,数轴上点A,B表示的数分别是1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M表示的数是( )
A. B.
C. D.
如图1,四边形ABCD内接于⊙O,AC为⊙O的直径,AC与BD交于点E,且AE=AB.
(1)DA=DB,求证:AB=CB;
(2)如图2,△ABC绕点C逆时针旋转30°得到△FGC,点A经过的路径为,若AC=4,求图中阴影部分面积S;
(3)在(2)的条件下,连接FB,求证:FB为⊙O的切线.