题目内容

计算化简:
6y
x2-y2
-
2
y-x
+
3
x+y
=
5
x-y
5
x-y
分析:先把各分式的分子或分母因式分解得到原式=
6y
(x+y)(x-y)
+
2
x-y
+
3
x+y
,然后通分得到原式=
6y
(x+y)(x-y)
+
2(x+y)
(x+y)(x-y)
+
3(x-y)
(x+y)(x-y)
,再把分子进行加减运算,得到原式=
6y
(x+y)(x-y)
+
2(x+y)
(x+y)(x-y)
+
3(x-y)
(x+y)(x-y)
,然后约分即可.
解答:解:原式=
6y
(x+y)(x-y)
+
2
x-y
+
3
x+y

=
6y
(x+y)(x-y)
+
2(x+y)
(x+y)(x-y)
+
3(x-y)
(x+y)(x-y)

=
6y+2x+2y+3x-3y
(x+y)(x-y)

=
6y
(x+y)(x-y)
+
2(x+y)
(x+y)(x-y)
+
3(x-y)
(x+y)(x-y)

=
5(x+y)
(x+y)(x-y)

=
5
x-y

故答案为
5
x-y
点评:本题考查了分式的加减法:先把各分式的分子或分母因式分解,确定各分式的最简公分母,然后把各分式进行通分,再把分子进行加减运算,最后化为最简分式或整式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网