题目内容
【题目】如图,A是数轴上表示-30的点,B是数轴上表示10的点,C是数轴上表示18的点,点A,B,C在数轴上同时向数轴的正方向运动,点A运动的速度是6个单位长度每秒,点B和C运动的速度是3个单位长度每秒.设三个点运动的时间为t秒(t≠5),设线段OA的中点为P,线段OB的中点为M,线段OC的中点为N,当2PM-PN=2时,t的值为_____.
【答案】或
【解析】当A,B,C三个点在数轴上同时向数轴正方向运动t秒时,
A,B,C三个点在数轴上表示的数分别为:6t30,10+3t,18+3t,
∵P,M,N分别为OA,OB,OC的中点,
∴P,M,N三个点在数轴上表示的数分别为: ,,,
∴M在N左边。
①若P在M,N左边,则PM==201.5t,PN==241.5t.
∵2PMPN=2,
∴2(201.5t)(241.5t)=2,
∴t=;
②若P在M,N之间,则PM==20+1.5t,PN==241.5t.
∵2PMPN=2,
∴2(20+1.5t)(241.5t)=2,
∴t=;
③若P在M,N右边,则PM==20+1.5t,PN==24+1.5t.
∵2PMPN=2,
∴2(20+1.5t)(24+1.5t)=2,
∴t=12,
但是此时PM=20+1.5t<0,所以此种情况不成立,
∴t=或.
点睛: 此题主要考查了一元一次方程的应用以及数轴上点的位置关系,根据P点位置的不同得出等式方程求出是解题关键.
练习册系列答案
相关题目