题目内容
抛物线与轴交于A、B两点,点P在函数的图象上,若△PAB为直角三角形,则满足条件的点P的个数为( ).
A. 2个 B. 3个 C. 4个 D. 6个
如图,已知DE∥BC,CD和BE相交于点O,S△DOE:S△COB=4:9,则AE:EC为( )
A. 2:1 B. 2:3 C. 4:9 D. 5:4
计算:cos245°+tan30°•sin60°= .
为了提升阅读速度,某中学开设了“高效阅读”课.小周同学经过2个月的训练,发现自己现在每分钟阅读的字数比原来的2倍还多300字,现在读9100字的文章与原来读3500字的文章所用的时间相同.求小周现在每分钟阅读的字数.
直线 与轴交于点C,与轴交于点B,与反比例函数的图象在第一象限交于点A,连接OA,若,则k的值为_____.
一袋中有同样大小的个小球,其中个红色,个白色.随机从袋中同时摸出两个球,这两个球颜色相同的概率是( ).
A. B. C. D.
如图,一次函数y=kx+b与反比例函数(m≠0)图象交于A(﹣4,2),
B(2,n)两点.
(1)求一次函数和反比例函数的表达式;
(2)求△ABO的面积;
(3)当x取非零的实数时,试比较一次函数值与反比例函数值的大小.
如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于( )
A. 122° B. 151° C. 116° D. 97°
聪聪参加我市电视台组织的“阳光杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有个选项,第二道单选题有4个选项,这两道题聪聪都不会,不过聪聪还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).
(1)如果聪聪两次“求助”都在第一道题中使用,那么聪聪通关的概率是 .
(2)如果聪聪将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.