搜索
题目内容
如图,BD是⊙O的直径,点A、C是⊙O上的点,若∠BAC=40°,则∠DOC=
A.
100°
B.
80°
C.
40°
D.
140°
试题答案
相关练习册答案
A
分析:根据同弧所对圆周角是圆心角的一半,可求出∠BOC的度数.由于∠COD和∠BOC互补,由此可求出∠DOC的度数.
解答:∵∠BOC和∠BAC是同弧所对的圆心角和圆周角,
∴∠BOC=2∠BAC=80°,
∴∠DOC=180°-80°=100°.故选A.
点评:本题利用了圆周角定理和邻补角的概念求解.
练习册系列答案
上海作业系列答案
海淀名师伴你学同步学练测系列答案
非练不可系列答案
孟建平名校考卷系列答案
新课标三习五练课堂作业系列答案
金牌教练系列答案
跟我学系列答案
精考卷全程测试系列答案
名师点津系列答案
零失误分层训练系列答案
相关题目
如图,△ABC是一个边长为2的等边三角形,D、E都在直线BC上,并且∠DAE=120°
(1)设BD=x,CE=y,求y与x直间的函数关系式;
(2)在上题中一共有几对相似三角形,分别指出来(不必证明)
(3)改变原题的条件为AB=AC=2,∠BAC=β,∠DAE=α,α、β之间要满足什么样的关系,能使(1)中y与x的关系式仍然成立?说明理由.
(2012•渝北区一模)如图,等边△ABC的边AB与正方形DEFG的边长均为2,且AB与DE在同一条直线上,开始时点B与点D重合,让△ABC沿这条直线向右平移,直到点B与点E重合为止,设BD的长为x,△ABC与正方形DEFG重叠部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是( )
A.
B.
C.
D.
泰勒斯是古希腊哲学家,相传他利用三角形全等的方法求出岸上一点到海中一艘船的距离.如图,B是观察点,船A在B的正前方,过B作AB的垂线,在垂线上截取任意长BD,C是BD的中点,观察者从点D沿垂直于BD的DE方向走,直到点E、船A和点C在一条直线上,那么△ABC≌△EDC,从而量出DE的距离即为船离岸的距离AB,这里判定△ABC≌△EDC的方法是( )
A.SAS
B.ASA
C.AAS
D.SSS
如图,等边△ABC的边AB与正方形DEFG的边长均为2,且AB与DE在同一条直线上,开始时点B与点D重合,让△ABC沿这条直线向右平移,直到点B与点E重合为止,设BD的长为x,△ABC与正方形DEFG重叠部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是( )
A.
B.
C.
D.
如图,△ABC是一个边长为2的等边三角形,D、E都在直线BC上,并且∠DAE=120°
(1)设BD=x,CE=y,求y与x直间的函数关系式;
(2)在上题中一共有几对相似三角形,分别指出来(不必证明)
(3)改变原题的条件为AB=AC=2,∠BAC=β,∠DAE=α,α、β之间要满足什么样的关系,能使(1)中y与x的关系式仍然成立?说明理由.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总