题目内容
分解因式:x2-9y2= .
已知△ABC与△DEC是两个大小不同的等腰直角三角形.
(1)如图①所示,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由;
(2)如图②所示,连接DB,将线段DB绕D点顺时针旋转90°到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.
先化简:(﹣x﹣1)÷,然后求当x=﹣1时代数式的值.
如图,已知圆O是△ABC的外接圆,AB是圆O的直径,C是圆上的一点,D是AB延长线上的一点,AE⊥CD交DC的延长线于点E,且AC平分∠EAB.
(1)求证:DE是圆O的切线.
(2)若AB=6,AE=4.8,求BD和BC的长.
一个扇形的弧长是20πcm,面积是240πcm2,则这个扇形的圆心角是 度.
已知关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,则m的取值范围是( )
A. m<﹣1 B. m>1 C. m<1且m≠0 D. m>﹣1且m≠0
如图①、②,在平面直角坐标系中,一边长为2的等边三角板CDE恰好与坐标系中的△OAB重合,现将三角板CDE绕边AB的中点G(G点也是DE的中点),按顺时针方向旋转180°到△C′ED的位置.
(1)求C′点的坐标;
(2)求经过O、A、C′三点的抛物线的解析式;
(3)如图③,⊙G是以AB为直径的圆,过B点作⊙G的切线与x轴相交于点F,求切线BF的解析式;
(4)在(3)的条件下,抛物线上是否存在一点M,使得△BOF与△AOM相似?若存在,请求出点M的坐标;若不存在,请说明理由.
如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(),则s()与t(s)的函数关系可用图像表示为( )
解不等式组:,并把解集在数轴上表示出来.