题目内容
如图,直线a∥b,∠1=85°,∠2=35°,则∠3=( )
A. 85° B. 60° C. 50° D. 35°
方程组的解是 .
数据1,2,3,5,5的众数是___________,平均数是_______________
如图,直线PA经过点A(-1,0)、点P(1,2),直线PB是一次函数y=-x+3的图象.
(1)求直线PA的表达式及Q点的坐标;
(2)求四边形PQOB的面积;
命题“同位角相等,两直线平行”中,条件是 ________________ ,结论是______________.
已知一组数据:60,30,40,50,70,这组数据的平均数和中位数分别是( )
A. 60,50 B. 50,60 C. 50,50 D. 60,60
有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30度.请回答下列问题:(1)试探究线段BD与线段MF的关系,并简要说明理由;
(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,请直接写出旋转角β的度数;
(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离是多少?
在矩形ABCD中,AD = 2AB = 4,E为AD的中点,一块足够大的三角板的直角顶点与E重合,将三角板绕点E旋转,三角板的两直角边分别交AB、BC(或它们的延长线)于点M、N,设∠AEM = α(0°<α < 90°),给出四个结论:
①AM =CN ②∠AME =∠BNE ③BN-AM =2 ④ .
上述结论中正确的个数是
A. 1 B. 2 C. 3 D. 4
如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.
(1)证明:AF=CE;
(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.