题目内容
【题目】如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,求证: ①BD∥CE
②DF∥AC.
【答案】证明:∵∠1=∠DMF,∠1=∠2, ∴∠2=∠DMF,
∴BD∥CE,
∴∠C=∠DBA,
∵∠C=∠D,
∴∠D=∠DBA,
∴AC∥DF.
【解析】先由对顶角相等,得到:∠1=∠DMF,然后根据等量代换得到:∠2=∠DMF,然后根据同位角相等两直线平行,得到BD∥CE,然后根据两直线平行,同位角相等,得到∠C=∠DBA,然后根据等量代换得到:∠D=∠DBA,最后根据内错角相等两直线平行,即可得到DF与AC平行.
【考点精析】认真审题,首先需要了解平行线的判定(同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行).
练习册系列答案
相关题目