题目内容
下列各式的计算结果为的是
A. B. C. D.
如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0, ),点A坐标为(-1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.
(1)求该抛物线的函数解析式;
(2)点F为线段AC上一动点,过点F作FE⊥x轴,FG⊥y轴,垂足分别为点E,G,当四边形OEFG为正方形时,求出点F的坐标;
(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在,请说明理由.
如果在△ABC中,∠A=70°-∠B,则∠C等于( )
A. 35° B. 70° C. 110° D. 140°
在平行四边形ABCD中,,,点E为BC中点,连结AE,将沿AE折叠到△AB?E的位置,若,则点B?到直线BC的距离为______.
如图,在的网格中,A,B均为格点,以点A为圆心,以AB的长为半径作弧,图中的点C是该弧与格线的交点,则的值是
如图,直线y=2x+2与y轴交于A点,与反比例函数y=(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.
(1)求k的值;
(2)在y轴上是否存在点B,使以点B、A、H、M为顶点的四边形是平行四边形?如果存在,求出B点坐标;如果不存在,请说明理由;
(3)点N(a,1)是反比例函数y=(x>0)图象上的点,在x轴上有一点P,使得PM+PN最小,请求出点P的坐标.
已知三个边长分别为2、3、5的正方形如图排列,则图中阴影部分面积为 .
如图,在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一个动点,(点D不要B,C重合),以AD为边在AD的上边作正方形ADEF,连接CF.
(1)观察猜想:如图1,当点D在线段BC上时,①BC与CF的位置关系为_____;②AC、CD、CF之间的数量关系为_____.
(2)如图2,当点D在线段CB的延长线上时,以上①、②关系是否成立?若成立去,请给出证明;若不成立,请写出正确的结论,并说明理由.
(3)如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GD,若AB=2,CD=BC,求出DG的长.
如图所示,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积y与容器内水深x间的函数关系的图象可能是( )