题目内容
若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为_____.
对于反比例函数,下列结论中正确的是 ( )
A.y取正值
B.在每个象限内y随x的增大而增大
C.在每个象限内y随x的增大而减小
D.y取负值
如图,某建筑物BC直立于水平地面,AC=9 m,要建造阶梯AB,使每阶高不超过20 cm,则此阶梯最少要建 阶.(最后一阶的高度不足20 cm时,按一阶算,取1.732)
如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线()过E,A′两点.
(1)填空:∠AOB= °,用m表示点A′的坐标:A′( , );
(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且时,△D′OE与△ABC是否相似?说明理由;
(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:
①求a,b,m满足的关系式;
②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.
(1)计算:(a-b)2-a(a-2b);
(2)解方程:=.
在Rt△ABC中,∠C=90°,如果AC=2,cosA=,那么AB的长是( )
A. 3 B. C. D.
如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于( )
A. 132° B. 134° C. 136° D. 138°
已知等边三角形的边长为,若以为圆心,为半径画圆,若的中点在上,则________.
如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.
(1)设菱形相邻两个内角的度数分别为和,将菱形的“接近度”定义为,于是,越小,菱形越接近于正方形.
①若菱形的一个内角为,则该菱形的“接近度”等于 ;
②当菱形的“接近度”等于 时,菱形是正方形.
(2)设矩形相邻两条边长分别是和(),将矩形的“接近度”定义为,于是越小,矩形越接近于正方形.
你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.