题目内容
下列运算结果正确的是( )
A. 2a+3b=5ab B. (a﹣2)2=a2﹣4 C. a3•(﹣2a)2=4a5 D. (a2)3=a5
南京、上海相距约300 km,快车与慢车的速度分别为100 km/ h和50 km/ h,两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为x h,快车、慢车行驶过程中离南京的路程为y1、y2 km.
(1)求y1、y2与x之间的函数关系式,并在下列平面直角坐标系中画出它们的图像;
(2)若镇江、南京相距约80 km,求两车经过镇江的时间间隔;
(3)直接写出出发多长时间,两车相距100 km.
从2,3,4,5中任取两个数,记作a和b,那么点(a,b)在函数y=图象上的概率为( )
A. B. C. D.
如图,已知直线AB与CD相交于点O,OA平分∠COE,若∠DOE=70°,则∠BOD=______________.
能说明命题“如果a是任意实数,那么>﹣a”是假命题的一个反例可以是( )
A. a=﹣ B. a= C. a=1 D. a=
阅读下列材料,完成任务:
自相似图形
定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.
任务:
(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为 ;
(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为 ;
(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).
请从下列A、B两题中任选一条作答:我选择 题.
A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a= (用含b的式子表示);
②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a= (用含n,b的式子表示);
B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含b的式子表示);
②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含m,n,b的式子表示).
先化简,再求值:(a+1)2﹣(a+1)(a﹣1),其中,a=﹣1.
天虹超市购进甲、乙两种水果,已知 1 千克甲种水果的进价比 1 千克乙种水果的进价多 4 元,购进 2
千克甲种水果与 3 千克乙种水果共需 28 元.
求甲种水果的进价为每千克多少元?
(2)经市场调查发现,甲种水果每天销售量 y(千克)与售价 m(元/千克)之间满足如图所示的函数关系,求 y
与 m 之间的函数关系;
(3)在(2)的条件下,为减少库存,每天甲种水果的销售量不能低于 16 千克,当甲种水果的售价定为多少元时,才能使每天销售甲种水果的利润最大?最大利润是多少?
在△ABC中,边BC=6,高AD=4,正方形EFGH的顶点E、F在边BC上,顶点H、G分别在边AB和AC上,那么这个正方形的边长等于( )
A. 3 B. 2.5 C. 2.4 D. 2