题目内容
如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB'C'的位置.若∠CAB'=25°则∠ACC''的度数为( )
A. 25° B. 40° C. 65° D. 70°
如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,求所得几何体的俯视图的周长.
如图,矩形ABCD的长AB=30,宽BC=20.
(1)如图①,若在矩形ABCD的内部沿四周有宽为1的环形区域,矩形A′B′C′D′与矩形ABCD相似吗?请说明理由;
(2)如图②,当x为多少时,矩形ABCD与矩形A′B′C′D′相似?
如图,已知△ACE≌△DBF,CE=BF,AE=DF,AD=8,BC=2,则AC=______.
计算:= __________.
如图1,正方形ABCD的对角线AC,BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM与BD相交于F.
(1)直接写出线段OE与OF的数量关系;
(2)如图2,若点E在AC的延长线上,过点A作AM⊥BE ,AM交DB的延长线于点F,其他条件不变.问(1)中的结论还成立吗?如果成立,请给出证明;如果不成立,说明理由;
(3)如图3,当BC=CE时,求∠EAF的度数.
如图,直线y=-x+4分别与x轴、y轴交于A、B两点.
(1)求A、B两点的坐标;
(2)已知点C坐标为(2,0),设点C关于直线AB的对称点为D,请直接写出点D的坐标.
若式子有意义,则x的取值范围是________.
学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).
(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是 ;
(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.