题目内容

【题目】如图,四边形ABCD为一个矩形纸片,AB=3,BC=2,动点P自D点出发沿DC方向运动至C点后停止,△ADP以直线AP为轴翻折,点D落在点D1的位置,设DP=x,△AD1P与原纸片重叠部分的面积为y.

(1)当x为何值时,直线AD1过点C?
(2)当x为何值时,直线AD1过BC的中点E?
(3)求出y与x的函数表达式.

【答案】
(1)

解:

如图1,∵由题意得:△ADP≌△AD1P,

∴AD=AD1=2,PD=PD1=x,∠D=∠AD1P=90°,

∵直线AD1过C,

∴PD1⊥AC,

在Rt△ABC中,AC= = ,CD1= ﹣2,

在Rt△PCD1中,PC2=PD12+CD12

即(3﹣x)2=x2+( ﹣2)2

解得:x=

∴当x= 时,直线AD1过点C


(2)

解:如图2,

连接PE,

∵E为BC的中点,

∴BE=CE=1,

在Rt△ABE中,AE= =

∵AD1=AD=2,PD=PD1=x,

∴D1E= ﹣2,PC=3﹣x,

在Rt△PD1E和Rt△PCE中,

x2+( ﹣2)2=(3﹣x)2+12

解得:x=

∴当x= 时,直线AD1过BC的中点E;


(3)

解:如图3,

当0<x≤2时,y=x,

如图4,

当2<x≤3时,点D1在矩形ABCD的外部,PD1交AB于F,

∵AB∥CD,

∴∠1=∠2,

∵∠1=∠3(根据折叠),

∴∠2=∠3,

∴AF=PF,

作PG⊥AB于G,

设PF=AF=a,

由题意得:AG=DP=x,FG=x﹣a,

在Rt△PFG中,由勾股定理得:(x﹣a)2+22=a2

解得:a=

所以y= =

综合上述,当0<x≤2时,y=x;当2<x≤3时,y=


【解析】(1)根据折叠得出AD=AD1=2,PD=PD1=x,∠D=∠AD1P=90°,在Rt△ABC中,根据勾股定理求出AC,在Rt△PCD1中,根据勾股定理得出方程,求出即可;(2)连接PE,求出BE=CE=1,在Rt△ABE中,根据勾股定理求出AE,求出AD1=AD=2,PD=PD1=x,D1E= ﹣2,PC=3﹣x,在Rt△PD1E和Rt△PCE中,根据勾股定理得出方程,求出即可;(3)分为两种情况:当0<x≤2时,y=x;当2<x≤3时,点D1在矩形ABCD的外部,PD1交AB于F,求出AF=PF,作PG⊥AB于G,设PF=AF=a,在Rt△PFG中,由勾股定理得出方程(x﹣a)2+22=a2 , 求出a即可.
【考点精析】掌握全等三角形的性质和勾股定理的概念是解答本题的根本,需要知道全等三角形的对应边相等; 全等三角形的对应角相等;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关题目

【题目】数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.
(1)探究一:求不等式|x﹣1|<2的解集
探究|x﹣1|的几何意义
如图①,在以O为原点的数轴上,设点A′对应的数是x﹣1,有绝对值的定义可知,点A′与点O的距离为|x﹣1|,可记为A′O=|x﹣1|.将线段A′O向右平移1个单位得到线段AB,此时点A对应的数是x,点B对应的数是1.因为AB=A′O,所以AB=|x﹣1|,因此,|x﹣1|的几何意义可以理解为数轴上x所对应的点A与1所对应的点B之间的距离AB.

探究求方程|x﹣1|=2的解
因为数轴上3和﹣1所对应的点与1所对应的点之间的距离都为2,所以方程的解为3,﹣1.
探究:
求不等式|x﹣1|<2的解集
因为|x﹣1|表示数轴上x所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点对应的数x的范围.
请在图②的数轴上表示|x﹣1|<2的解集,并写出这个解集.

(2)探究二:探究 的几何意义
探究:
的几何意义
如图③,在直角坐标系中,设点M的坐标为(x,y),过M作MP⊥x轴于P,作MQ⊥y轴于Q,则P点坐标为(x,0),Q点坐标为(0,y),OP=|x|,OQ=|y|,在Rt△OPM中,PM=OQ=|y|,则MO= = = ,因此, 的几何意义可以理解为点M(x,y)与点O(0,0)之间的距离MO.

探究:
的几何意义
如图④,在直角坐标系中,设点A′的坐标为(x﹣1,y﹣5),由探究二(1)可知,A′O= ,将线段A′O先向右平移1个单位,再向上平移5个单位,得到线段AB,此时点A的坐标为(x,y),点B的坐标为(1,5),因为AB=A′O,所以AB= ,因此 的几何意义可以理解为点A(x,y)与点B(1,5)之间的距离AB.

探究 的几何意义
①请仿照探究二的方法,在图⑤中画出图形,并写出探究过程.
的几何意义可以理解为:

(3)拓展应用:
+ 的几何意义可以理解为:点A(x,y)与点E(2,﹣1)的距离和点A(x,y)与点F(填写坐标)的距离之和.
+ 的最小值为(直接写出结果)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网