题目内容
【题目】某旅行社带一旅游团来宜春明月山游玩,晚上入住温汤某酒店,现需要订9个房间,酒店房间分为两种:A种房间200元/间,B种房间160/间,在费用不超过1700元的情况下,要求A种房间的数量不少于B种房间数量的一半.若设订A种房间x间,请你解答下列问题:
(1)共有几种符合题意的订房方案?写出解答过程.
(2)根据计算判断:哪种订房方案更省钱?
【答案】
(1)解:设A种房间的数量为x,则B种房间的数量为(9﹣x).
依题意可得 ,
解得:3≤x≤ .
∵x为整数,
∴x=3或x=4或x=5或x=6.
∴共有4种方案:①3间A,6间B;②4间A,5间B;③5间A,4间B;④6间A,3间B
(2)解:∵当A种房间越少,所需费用最低,
∴当x=3时,时,最低费用为3×200+6×160=1560元
【解析】(1)设A种房间的数量为x,则B种房间的数量为(9﹣x),然后依据A种房间的数量不少于B种房间数量的一半;总费用不超过1700元列不等式组可求得x的范围,然后由x为正整数,从而可确定出所有的方案;(2)由于A种房间的单间较高,故此x越小费用越低,从而可得到当x=3时,总费用最低,然后求得最低费用即可.
【考点精析】通过灵活运用一元一次不等式组的应用,掌握1、审:分析题意,找出不等关系;2、设:设未知数;3、列:列出不等式组;4、解:解不等式组;5、检验:从不等式组的解集中找出符合题意的答案;6、答:写出问题答案即可以解答此题.
练习册系列答案
相关题目