ÌâÄ¿ÄÚÈÝ
Èçͼ£¬Ö±ÏßEF½«¾ØÐÎֽƬABCD·Ö³ÉÃæ»ýÏàµÈµÄÁ½²¿·Ö£¬E¡¢F·Ö±ðÓëBC½»ÓÚµãE£¬ÓëAD½»ÓÚµãF£¨E£¬F²»Ó붥µãÖغϣ©£¬ÉèAB=a£¬AD=b£¬BE=x£®£¨¢ñ£©ÇóÖ¤£ºAF=EC£»
£¨¢ò£©Óüôµ¶½«Ö½Æ¬ÑØÖ±ÏßEF¼ô¿ªºó£¬ÔÙ½«Ö½Æ¬ABEFÑØAB¶Ô³Æ·ÕÛ£¬È»ºóƽÒÆÆ´½ÓÔÚÌÝÐÎECDFµÄÏ·½£¬Ê¹Ò»µ×±ßÖغϣ¬Ö±ÑüÂäÔÚ±ßDCµÄÑÓ³¤ÏßÉÏ£¬Æ´½Óºó£¬Ï·½µÄÌÝÐμÇ×÷EE¡äB¡äC£®
£¨1£©Çó³öÖ±ÏßEE¡ä·Ö±ð¾¹ýÔ¾ØÐεĶ¥µãAºÍ¶¥µãDʱ£¬Ëù¶ÔÓ¦µÄx£ºbµÄÖµ£»
£¨2£©ÔÚÖ±ÏßEE¡ä¾¹ýÔ¾ØÐεÄÒ»¸ö¶¥µãµÄÇéÐÎÏ£¬Á¬½ÓBE¡ä£¬Ö±ÏßBE¡äÓëEFÊÇ·ñƽÐУ¿ÄãÈôÈÏΪƽÐУ¬Çë¸øÓèÖ¤Ã÷£»ÄãÈôÈÏΪ²»Æ½ÐУ¬ÇëÄã˵Ã÷µ±aÓëbÂú×ãʲô¹Øϵʱ£¬ËüÃÇ´¹Ö±£¿
·ÖÎö£º£¨¢ñ£©ÓÉAB=a£¬AD=b£¬BE=x£¬SÌÝÐÎABEF=SÌÝÐÎCDFE£¬½áºÏÌÝÐεÄÃæ»ý¹«Ê½¿ÉÖ¤µÃAF=EC£»
£¨¢ò£©£¨1£©¸ù¾ÝÌâÒ⣬»³öͼÐΣ¬½áºÏÌÝÐεÄÐÔÖÊÇóµÃx£ºbµÄÖµ£»
£¨2£©Ö±ÏßEE¡ä¾¹ýÔ¾ØÐεĶ¥µãDʱ£¬¿ÉÖ¤Ã÷ËıßÐÎBE¡äEFÊÇƽÐÐËıßÐΣ¬ÔòBE¡ä¡ÎEF£»µ±Ö±ÏßEE¡ä¾¹ýÔ¾ØÐεĶ¥µãAʱ£¬BE¡äÓëEF²»Æ½ÐУ®
£¨¢ò£©£¨1£©¸ù¾ÝÌâÒ⣬»³öͼÐΣ¬½áºÏÌÝÐεÄÐÔÖÊÇóµÃx£ºbµÄÖµ£»
£¨2£©Ö±ÏßEE¡ä¾¹ýÔ¾ØÐεĶ¥µãDʱ£¬¿ÉÖ¤Ã÷ËıßÐÎBE¡äEFÊÇƽÐÐËıßÐΣ¬ÔòBE¡ä¡ÎEF£»µ±Ö±ÏßEE¡ä¾¹ýÔ¾ØÐεĶ¥µãAʱ£¬BE¡äÓëEF²»Æ½ÐУ®
½â´ð£º£¨¢ñ£©Ö¤Ã÷£º¡ßAB=a£¬AD=b£¬BE=x£¬SÌÝÐÎABEF=SÌÝÐÎCDFE£¬
¡à
a£¨x+AF£©=
a£¨EC+b-AF£©£¬
¡à2AF=EC+£¨b-x£©£®
ÓÖ¡ßEC=b-x£¬
¡à2AF=2EC£®
¡àAF=EC£®
£¨¢ò£©½â£º£¨1£©µ±Ö±ÏßEE¡ä¾¹ýÔ¾ØÐεĶ¥µãDʱ£¬Èçͼ£¨Ò»£©
¡ßEC¡ÎE¡äB¡ä£¬
¡à
=
£¬
ÓÉEC=b-x£¬E¡äB¡ä=EB=x£¬DB¡ä=DC+CB¡ä=2a£¬
µÃ
=
£¬
¡àx£ºb=
£®
µ±Ö±ÏßE¡äE¾¹ýÔ¾ØÐεĶ¥µãAʱ£¬Èçͼ£¨¶þ£©
ÔÚÌÝÐÎAE¡äB¡äDÖУ¬
¡ßEC¡ÎE¡äB¡ä£¬µãCÊÇDB¡äµÄÖе㣬
¡àCE=
£¨AD+E¡äB¡ä£©£¬
¼´b-x=
£¨b+x£©£¬
¡àx£ºb=
£®
£¨2£©Èçͼ£¨Ò»£©£¬µ±Ö±ÏßEE¡ä¾¹ýÔ¾ØÐεĶ¥µãDʱ£¬BE¡ä¡ÎEF£¬
Ö¤Ã÷£ºÁ¬½ÓBF£¬
¡ßFD¡ÎBE£¬FD=BE£¬
¡àËıßÐÎFBEDÊÇƽÐÐËıßÐΣ¬
¡àFB¡ÎDE£¬FB=DE£¬
ÓÖ¡ßEC¡ÎE¡äB¡ä£¬µãCÊÇDB¡äµÄÖе㣬
¡àDE=EE¡ä£¬
¡àFB¡ÎEE¡ä£¬FB=EE¡ä£¬
¡àËıßÐÎBE¡äEFÊÇƽÐÐËıßÐΣ¬
¡àBE¡ä¡ÎEF£®
Èçͼ£¨¶þ£©£¬µ±Ö±ÏßEE¡ä¾¹ýÔ¾ØÐεĶ¥µãAʱ£¬ÏÔÈ»BE¡äÓëEF²»Æ½ÐУ¬
ÉèÖ±ÏßEFÓëBE¡ä½»ÓÚµãG£¬¹ýµãE¡ä×÷E¡äM¡ÍBCÓÚM£¬ÔòE¡äM=a£¬
¡ßx£ºb=
£¬
¡àEM=
BC=
b£¬
ÈôBE¡äÓëEF´¹Ö±£¬ÔòÓСÏGBE+¡ÏBEG=90¡ã£¬
ÓÖ¡ß¡ÏBEG=¡ÏFEC=¡ÏMEE¡ä£¬¡ÏMEE¡ä+¡ÏME¡äE=90¡ã£¬
¡à¡ÏGBE=¡ÏME¡äE£¬
ÔÚRt¡÷BME¡äÖУ¬tan¡ÏE¡äBM=tan¡ÏGBE=
=
£¬
ÔÚRt¡÷EME¡äÖУ¬tan¡ÏME¡äE=
=
£¬
¡à
=
£®
ÓÖ¡ßa£¾0£¬b£¾0£¬
=
£¬
¡àµ±
=
ʱ£¬BE¡äÓëEF´¹Ö±£®
¡à
1 |
2 |
1 |
2 |
¡à2AF=EC+£¨b-x£©£®
ÓÖ¡ßEC=b-x£¬
¡à2AF=2EC£®
¡àAF=EC£®
£¨¢ò£©½â£º£¨1£©µ±Ö±ÏßEE¡ä¾¹ýÔ¾ØÐεĶ¥µãDʱ£¬Èçͼ£¨Ò»£©
¡ßEC¡ÎE¡äB¡ä£¬
¡à
EC |
E¡äB¡ä |
DC |
DB¡ä |
ÓÉEC=b-x£¬E¡äB¡ä=EB=x£¬DB¡ä=DC+CB¡ä=2a£¬
µÃ
b-x |
x |
a |
2a |
¡àx£ºb=
2 |
3 |
µ±Ö±ÏßE¡äE¾¹ýÔ¾ØÐεĶ¥µãAʱ£¬Èçͼ£¨¶þ£©
ÔÚÌÝÐÎAE¡äB¡äDÖУ¬
¡ßEC¡ÎE¡äB¡ä£¬µãCÊÇDB¡äµÄÖе㣬
¡àCE=
1 |
2 |
¼´b-x=
1 |
2 |
¡àx£ºb=
1 |
3 |
£¨2£©Èçͼ£¨Ò»£©£¬µ±Ö±ÏßEE¡ä¾¹ýÔ¾ØÐεĶ¥µãDʱ£¬BE¡ä¡ÎEF£¬
Ö¤Ã÷£ºÁ¬½ÓBF£¬
¡ßFD¡ÎBE£¬FD=BE£¬
¡àËıßÐÎFBEDÊÇƽÐÐËıßÐΣ¬
¡àFB¡ÎDE£¬FB=DE£¬
ÓÖ¡ßEC¡ÎE¡äB¡ä£¬µãCÊÇDB¡äµÄÖе㣬
¡àDE=EE¡ä£¬
¡àFB¡ÎEE¡ä£¬FB=EE¡ä£¬
¡àËıßÐÎBE¡äEFÊÇƽÐÐËıßÐΣ¬
¡àBE¡ä¡ÎEF£®
Èçͼ£¨¶þ£©£¬µ±Ö±ÏßEE¡ä¾¹ýÔ¾ØÐεĶ¥µãAʱ£¬ÏÔÈ»BE¡äÓëEF²»Æ½ÐУ¬
ÉèÖ±ÏßEFÓëBE¡ä½»ÓÚµãG£¬¹ýµãE¡ä×÷E¡äM¡ÍBCÓÚM£¬ÔòE¡äM=a£¬
¡ßx£ºb=
1 |
3 |
¡àEM=
1 |
3 |
1 |
3 |
ÈôBE¡äÓëEF´¹Ö±£¬ÔòÓСÏGBE+¡ÏBEG=90¡ã£¬
ÓÖ¡ß¡ÏBEG=¡ÏFEC=¡ÏMEE¡ä£¬¡ÏMEE¡ä+¡ÏME¡äE=90¡ã£¬
¡à¡ÏGBE=¡ÏME¡äE£¬
ÔÚRt¡÷BME¡äÖУ¬tan¡ÏE¡äBM=tan¡ÏGBE=
E¡äM |
BM |
a | ||
|
ÔÚRt¡÷EME¡äÖУ¬tan¡ÏME¡äE=
EM |
E¡äM |
| ||
a |
¡à
a | ||
|
| ||
a |
ÓÖ¡ßa£¾0£¬b£¾0£¬
a |
b |
| ||
3 |
¡àµ±
a |
b |
| ||
3 |
µãÆÀ£º±¾ÌâÊǵÀ¸ù¾ÝƽÒƵÄÐÔÖÊ¡¢ÌÝÐεÄÐÔÖʺÍƽÐÐËıßÐεÄÐÔÖʽáºÏÇó½âµÄ×ÛºÏÌ⣬½âÌ⸴ÔÓ£¬ÄѶȴ󣮿¼²éѧÉú×ÛºÏÔËÓÃÊýѧ֪ʶµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿