题目内容
如图,已知1号、4号两个正方形的面积和为7,2号、3号两个正方形的面积和为4,则a,b,c三个正方形的面积和为
- A.11
- B.15
- C.10
- D.22
B
分析:由直角三角形的勾股定理以及正方形的面积公式,不难发现:a的面积等于1的面积加上2的面积,b的面积等于2加上3,据此可以求出三个的面积的和.
解答:利用勾股定理可得Sa=S1+S2,Sb=S2+S3,Sc=S3+S4,
∴Sa+Sb+Sc=Sa=S1+S2+S2+S3+S3+S4=7+4+4=15.
故选B.
点评:本题考查了勾股定理的运用,结合正方形的面积公式求解.
分析:由直角三角形的勾股定理以及正方形的面积公式,不难发现:a的面积等于1的面积加上2的面积,b的面积等于2加上3,据此可以求出三个的面积的和.
解答:利用勾股定理可得Sa=S1+S2,Sb=S2+S3,Sc=S3+S4,
∴Sa+Sb+Sc=Sa=S1+S2+S2+S3+S3+S4=7+4+4=15.
故选B.
点评:本题考查了勾股定理的运用,结合正方形的面积公式求解.
练习册系列答案
相关题目