题目内容
【题目】正方形、正方形如图放置,点在同一条直线上,点在边上,,且,连结交于,有下列结论:①;②;③;④;⑤.以上结论正确的个数有( )
A.5个B.4个C.3个D.2个
【答案】C
【解析】
①由同角的余角相等可证出△EPF≌△BAP,由此即可得出EF=BP,再根据正方形的性质即可得出①成立;②没有满足证明AP=AH的条件;③根据平行线的性质可得出∠GFP=∠EPF,再由∠EPF=∠BAP即可得出③成立;④在Rt△ABP中,利用勾股定理即可得出④不成立;⑤结合④的过程即可得出⑤成立.综上即可得出结论.
①∵∠EPF+∠APB=90°,∠APB+∠BAP=90°,
∴∠EPF=∠BAP.
在△EPF和△BAP中,
,
∴△EPF≌△BAP(AAS),
∴EF=BP,
∵四边形CEFG为正方形,
∴EC=EF=BP,即①成立;
②无法证出AP=AH;
③∵FG∥EC,
∴∠GFP=∠EPF,
又∵∠EPF=∠BAP,
∴∠BAP=∠GFP,即③成立;
④由①可知EC=BP,
在Rt△ABP中,AB2+BP2=AP2,
∵PA=PF,且∠APF=90°,
∴△APF为等腰直角三角形,
∴AF2=AP2+FP2=2AP2,
∴AB2+BP2=AB2+CE2=AP2=AF2,
∴
即④不成立;
⑤由④可知:AB2+CE2=AP2,
又∵S正方形ABCD= AB2,S正方形CGFE= CE2,
∴S正方形ABCD+S正方形CGFE=2S△APF,即⑤成立.
故成立的结论有①③⑤.
故选:C.
练习册系列答案
相关题目