题目内容

【题目】如图,在矩形ABCD中,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.则BC:AB的值为

【答案】

【解析】连接CC′,

∵将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处,

∴EC=EC′,∴∠EC′C=∠ECC′,

∵∠DC′C=∠ECC′,∴∠EC′C=∠DC′C.

∴CC′是∠EC'D的平分线。

∵∠CB′C′=∠D=90°,C′C=C′C,∴△CB′C′≌△CDC′(AAS)。∴CB′=CD。

又∵AB′=AB,∴B′是对角线AC中点,即AC=2AB。∴∠ACB=30°。

∴tan∠ACB=tan30°=。∴BC:AB=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网