题目内容
【题目】如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=120°,CE∥BD,DE∥AC,若AD=4,则四边形CODE的周长 .
【答案】16
【解析】
试题分析:首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=4,即可判定四边形CODE是菱形,继而求得答案.
解:∵四边形ABCD是矩形,
∴BD=AC,DO=BO,AO=CO,
∴OD=OA,
∵∠AOB=120°,
∴∠DOA=60°,
∴△AOD是等边三角形,
∴DO=AO=AD=OC=4,
∵CE∥BD,DE∥AC,
∴四边形CODE是平行四边形,
∴四边形CODE是菱形,
∴四边形CODE的周长为:4OC=4×4=16,
故答案为:16.
练习册系列答案
相关题目