题目内容
已知x=4-
,则分式
=
| 2 |
| x4-6x3-2x2+18x+23 |
| x2-8x+15 |
10
-17
| 2 |
10
-17
.| 2 |
分析:首先求得当x=4-
时,x2-8x+15=1,然后将原式化为x4-6x3-2x2+18x+23=x2(x2-8x+15)+2x(x2-8x+15)-(x2-8x+15)-20x+38,即可将原式化简,然后代入x=4-
,即可求得答案.
| 2 |
| 2 |
解答:解:∵当x=4-
时,x2-8x+15=(x-3)(x-5)=(1-
)(-1-
)=1,
∴
=x4-6x3-2x2+18x+23
=x2(x2-8x+15)+2x(x2-8x+15)-(x2-8x+15)-20x+38
=x2+2x-1-20x+38
=x2-18x+37
=(x2-8x+15)-10x+22
=1-10x+22
=23-10x,
∴当x=4-
时,原式=23-10(4-
)=10
-17.
故答案为:10
-17.
| 2 |
| 2 |
| 2 |
∴
| x4-6x3-2x2+18x+23 |
| x2-8x+15 |
=x4-6x3-2x2+18x+23
=x2(x2-8x+15)+2x(x2-8x+15)-(x2-8x+15)-20x+38
=x2+2x-1-20x+38
=x2-18x+37
=(x2-8x+15)-10x+22
=1-10x+22
=23-10x,
∴当x=4-
| 2 |
| 2 |
| 2 |
故答案为:10
| 2 |
点评:此题考查了分式的化简求值问题.此题比较难,注意得到x2-8x+15=1与将原式化为x2(x2-8x+15)+2x(x2-8x+15)-(x2-8x+15)-20x+38是解此题的关键.
练习册系列答案
相关题目