题目内容
已知:矩形纸片ABCD中,AB=26厘米,BC=18.5厘米,点E在AD上,且AE=6厘米,点P是AB边上一动点.按如下操作:
步骤一,折叠纸片,使点P与点E重合,展开纸片得折痕MN(如图1所示);
步骤二,过点P作PT⊥AB,交MN所在的直线于点Q,连接QE(如图2所示)
【小题1】无论点P在AB边上任何位置,都有PQ_________QE(填“”、“”、“”号);
【小题2】如图3所示,将纸片ABCD放在直角坐标系中,按上述步骤一、二进行操作:
①当点P在A点时,PT与MN交于点Q1,Q1点的坐标是(_______,_________);
②当PA=6厘米时,PT与MN交于点Q2. Q2点的坐标是(_______,_________);
③当PA=12厘米时,在图3中画出MN,PT(不要求写画法),并求出MN与PT的交点Q3的坐标;
【小题3】点P在运动过程,PT与MN形成一系列的交点Q1,Q2,Q3……观察、猜想:众多的交点形成的图象是什么?并直接写出该图象的函数表达式.
【小题1】
【小题2】;②.③画图见解析。
【小题3】抛物线、函数关系式:
解析
练习册系列答案
相关题目