题目内容

【题目】如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.

(1)试判断BE与FH的数量关系,并说明理由;

(2)求证:∠ACF=90°;

(3)连接AF,过A、E、F三点作圆,如图2,若EC=4,∠CEF=15°,求的长.

【答案】(1)BE=FH;(2)证明见解析(3)2π

【解析】

试题分析:(1)利用ABE≌△EHF求证BE=FH,

(2)由BE=FH,AB=EH,推出CH=FH,得到∠HCF=45°,由四边形ABCD是正方形,所以∠ACB=45°,得出∠ACF=90°,

(3)作CP⊥EF于P,利用相似三角形△CPE∽△FHE,求出EF,利用公式求出的长.

试题解析:(1)BE=FH.

证明:∵∠AEF=90°,∠ABC=90°,

∴∠HEF+∠AEB=90°,∠BAE+∠AEB=90°,

∴∠HEF=∠BAE,

在△ABE和△EHF中,

∴△ABE≌△EHF(AAS)

∴BE=FH.

(2)由(1)得BE=FH,AB=EH,

∵BC=AB,

∴BE=CH,

∴CH=FH,

∴∠HCF=45°,

∵四边形ABCD是正方形,

∴∠ACB=45°,

∴∠ACF=180°﹣∠HCF﹣∠ACB=90°.

(3)由(2)知∠HCF=45°,∴CF=FH.

∠CME=∠HCF﹣∠CEF=45°﹣15°=30°.

如图2,过点C作CP⊥EF于P,则CP=CF=FH.

∵∠CEP=∠FEH,∠CPE=∠FHE=90°,

∴△CPE∽△FHE.

,即

∴EF=4

∵△AEF为等腰直角三角形,∴AF=8.

取AF中点O,连接OE,则OE=OA=4,∠AOE=90°,

的弧长为: =2π.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网