题目内容

从直径AB的延长线上取一点C,过点C作该圆的切线,切点为D,若∠ACD的平分线交AD于点E,则∠CED的度数是


  1. A.
    30°
  2. B.
    45°
  3. C.
    60°
  4. D.
    随点C的变化而变化
B
分析:连OD,根据切线的性质得OD⊥CD,则∠4+∠ODC=90°,而AB为⊙O的直径,得到∠ADB=90°,得∠A+∠ABD=90°,得到∠A=∠4,又∠3=∠A+∠2,∠5=∠1+∠4,可得∠3=∠5,得到∠3=×90°=45°.
解答:解:连OD,如图,
∵CD为⊙O的切线,
∴OD⊥CD,
∴∠4+∠ODB=90°,
而AB为⊙O的直径,
∴∠ADB=90°,
∴∠A+∠ABD=90°,
而∠ABD=∠ODB,
∴∠A=∠4,
又∵∠3=∠A+∠2,
∠5=∠1+∠4,
而EC平分∠ACD,即∠1=∠2,
∴∠3=∠5,
∴∠3=×90°=45°.
故选B.
点评:本题考查了切线的性质:圆心与切点的连线垂直切线;过圆心垂直于切线的直线必过切点;过圆外一点引圆的两条切线,切线长相等.也考查了直径所对的圆周角为直角以及三角形外角的性质.
练习册系列答案
相关题目
唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望峰火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题--将军饮马问题:
如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河旁边的P点饮马后再到B点宿营.请问怎样走才能使总的路程最短?
做法如下:如图1,从B出发向河岸引垂线,垂足为D,在AD的延长线上,取B关于河岸的对称点B′,连接AB′,与河岸线相交于P,则P点就是饮马的地方,将军只要从A出发,沿直线走到P,饮马之后,再由P沿直线走到B,所走的路程就是最短的.
(1)观察发现
再如图2,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,点E、F是底边AD与BC的中点,连接EF,在线段EF上找一点P,使BP+AP最短.
作点B关于EF的对称点,恰好与点C重合,连接AC交EF于一点,则这点就是所求的点P,故BP+AP的最小值为
2
3
2
3

(2)实践运用
如图3,已知⊙O的直径MN=1,点A在圆上,且∠AMN的度数为30°,点B是弧AN的中点,点P在直径MN上运动,求BP+AP的最小值.
(3)拓展迁移
如图4,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
①求这条抛物线所对应的函数关系式;
②在抛物线的对称轴直线x=1上找到一点M,使△ACM周长最小,请求出此时点M的坐标与△ACM周长最小值.(结果保留根号)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网