题目内容
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201112/62/619d6ee0.png)
分析:根据角平分线性质,过P作PM⊥AB于点M,PN⊥BC于N点,则PM=PN,已知PD=PE,可证Rt△DPM≌Rt△EPN,再利用对应角相等及平角的性质证明∠BDP+∠BEP=180°.
解答:
解:∠BDP+∠BEP=180°.
理由:过P作PM⊥AB于点M,PN⊥BC于N点,
由角平分线性质,得PM=PN
在Rt△DPM和Rt△EPN中
∴Rt△DPM≌Rt△EPN(HL)
∠ADP=∠BEP,
又∠BDP+∠ADP=180°,
∴∠BDP+∠BEP=180°.
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201112/62/81419f8b.png)
理由:过P作PM⊥AB于点M,PN⊥BC于N点,
由角平分线性质,得PM=PN
在Rt△DPM和Rt△EPN中
|
∴Rt△DPM≌Rt△EPN(HL)
∠ADP=∠BEP,
又∠BDP+∠ADP=180°,
∴∠BDP+∠BEP=180°.
点评:本题考查了角平分线性质的运用和三角形全等的性质及判定,转化的思想的应用.正确作出辅助线是解决问题的关键.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目