题目内容

【题目】如图所示,在⊙O内有折线OABC,其中OA=4,AB=6,∠A=∠B=60°,则BC的长为

【答案】10
【解析】解:延长AO交BC于D,作OH⊥BC于H, ∵∠A=∠B=60°,
∴△ABD为等边三角形,
∴∠ADB=60°,AD=BD=AB=6,
∴OD=AD﹣OA=6﹣4=2,
在Rt△ODH中,∠ODH=60°,
∴∠DOH=30°,
∴DH= OD=1,
∴BH=BD﹣DH=6﹣1=5,
∵OH⊥BC,
∴BC=2BH=10.
故答案为:10.

首先延长AO交BC于D,作OH⊥BC于H,由∠A=∠B=60°,可判断△ABD为等边三角形,根据等边三角形的性质可求得BD的长,再由含30°角的直角三角形的性质,求得DH的长,则可得到BH的长,根据垂径定理的性质,即可求得答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网