题目内容
二次函数y=ax2+bx+c的图象如图所示,对于下列结论:
①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.
其中正确的个数是
- A.1个
- B.2个
- C.3个
- D.4个
C
分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解答:如图,①抛物线开口方向向下,则a<0.故①正确;
②∵对称轴x=-=1,∴b=-2a>0,即b>0.故②错误;
③∵抛物线与y轴交于正半轴,∴c>0.故③正确;
④∵对称轴x=-=1,∴b+2a=0.故④正确;
⑤根据图示知,当x=1时,y>0,即a+b+c>0.故⑤错误.
综上所述,正确的说法是①③④,共有3个.
故选C.
点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解答:如图,①抛物线开口方向向下,则a<0.故①正确;
②∵对称轴x=-=1,∴b=-2a>0,即b>0.故②错误;
③∵抛物线与y轴交于正半轴,∴c>0.故③正确;
④∵对称轴x=-=1,∴b+2a=0.故④正确;
⑤根据图示知,当x=1时,y>0,即a+b+c>0.故⑤错误.
综上所述,正确的说法是①③④,共有3个.
故选C.
点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
练习册系列答案
相关题目