题目内容
【题目】如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1 , ∠ABD1与∠ACD1的角平分线交于点D2 , 依此类推,∠ABD4与∠ACD4的角平分线交于点D5 , 则∠BD5C的度数是( )
A.24°
B.25°
C.30°
D.36°
【答案】B
【解析】∵∠A=20°,
∴∠ABC+∠ACB=180°-20°=160°,
∵∠ABC与∠ACB的角平分线交于D1 ,
∴∠D1BC+∠D1CB=80°,
由题意得,∴∠D2BC+∠D2CB=80°+40°=120°,
∴∠D3BC+∠D3CB=120°+20°=140°,
∴∠D4BC+∠D4CB=140°+10°=150°,
∴∠D5BC+∠D5CB=150°+5°=155°,
∴∠BD5C=180°-155°=25°.
根据∠A=20°,求出∠ABC+∠ACB的度数,根据题意依次求出∠D1BC+∠D1CB…∠D5BC+∠D5CB的度数,得到答案.本题考查的是三角形内角和定理和角平分线的定义,熟知三角形的内角和等于180°和角平分线的定义是解答此题的关键.
练习册系列答案
相关题目