题目内容
【题目】收集和整理数据.
某中学七(1)班学习了统计知识后,数学老师要求每个学生就本班学生的上学方式进行一次全面调查,如图是一同学通过收集数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(每个学生只选择1种上学方式).
(1)求该班乘车上学的人数;
(2)将频数分布直方图补充完整;
(3)若该校七年级有1200名学生,能否由此估计出该校七年级学生骑自行车上学的人数,为什么?
【答案】(1)10,(2)见解析;(3)不能由此估计出该校七年级学生骑自行车上学的人数.
【解析】
试题分析:(1)先求出该班学生的人数,再乘以乘车上学的百分比求解即可,
(2)求出步行的人数,再补全条形统计图,
(3)利用全面调查与抽样调查的区别来分析即可.
解:(1)该班学生的人数为:15÷30%=50(人),
该班乘车上学的人数为:50×(1﹣50%﹣30%)=10(人),
(2)步行的人数为:50×50%=25(人),
补全条形统计图,
(3)不能由此估计出该校七年级学生骑自行车上学的人数.
这是七(1)班数学老师要求每个学生就本班学生的上学方式进行一次全面调查,不是七年级学生上学方式的抽样调查,收集的数据对本校七年级学生的上学方式不具有代表性.
【题目】某弹簧的长度与所挂物体质量之间的关系如下表:
所挂物体的质量/千克 | 0 | 1 | 2 | 3 | 4 | 5 |
弹簧的长度/厘米 | 10 | 10.4 | 10.8 | 11.2 | 11.6 | 12 |
(1)如果所挂物体的质量用x表示,弹簧的长度用y表示,请直接写出y与x满足的关系式.
(2)当所挂物体的质量为10千克时,弹簧的长度是多少?
【题目】某课题组为了解全市八年级学生对数学知识的掌握情况,在一次数学检测中,从全市24000名八年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:
分数段 | 频数 | 频率 |
<60 | 20 | 0.10 |
60≤<70 | 28 | 0.14 |
70≤<80 | 54 | 0.27 |
80≤<90 | 0.20 | |
90≤<100 | 24 | 0.12 |
100≤<110 | 18 | |
110≤≤120 | 16 | 0.08 |
请根据以上图表提供的信息,解答下列问题:
(1)表中和所表示的数分别为:= ,= ;
(2)请在图中,补全频数分布直方图;
(3)如果把成绩在90分以上(含90分)定为优秀,那么该市24000名八年级考生数学成绩为优秀的学生约有多少名?