题目内容
【题目】如图,直线AB与CD相交于O.OF是∠BOD的平分线,OE⊥OF.
(1)若∠BOE比∠DOF大38°,求∠DOF和∠AOC的度数;
(2)试问∠COE与∠BOE之间有怎样的大小关系?请说明理由.
(3)∠BOE的余角是 ,∠BOE的补角是 .
【答案】(1)∠DOF=26°,∠AOC=52°;(2)∠COE=∠BOE;(3)∠BOF和∠DOF,∠AOE和∠DOE.
【解析】试题分析:(1)设∠BOF=α,根据角平分线的定义得出∠DOF=∠BOF=α,得出方程38°+α+α+α=90°,求出方程的解即可;
(2)求出∠COE=180°-∠DOE=90°-∠DOF,根据垂直求出∠BOE=90°-∠BOF,即可得出答案;
(3)根据余角和补角定义求出即可.
试题解析:(1)设∠BOF=α,
∵OF是∠BOD的平分线,
∴∠DOF=∠BOF=α,
∵∠BOE比∠DOF大38°,
∴∠BOE=38°+∠DOF=38°+α,
∵OE⊥OF,
∴∠EOF=90°,
∴38°+α+α+α=90°,
解得:α=26°,
∴∠DOF=26°,∠AOC=∠BOD=∠DOF+∠BOF=26°+26°=52°;
(2)∠COE=∠BOE,
理由是:∵∠COE=180°﹣∠DOE=180°﹣(90°+∠DOF)=90°﹣∠DOF,
∵OF是∠BOD的平分线,
∴∠DOF=∠BOF,
∴∠COE=90°﹣∠BOF,
∵OE⊥OF,
∴∠EOF=90°,
∴∠BOE=90°﹣∠BOF,
∴∠COE=∠BOE;
(3)∠BOE的余角是∠BOF和∠DOF,∠BOE的补角是∠AOE和∠DOE,
故答案为:∠BOF和∠DOF,∠AOE和∠DOE.
练习册系列答案
相关题目