题目内容
若β(β≠0)是关于x的方程ax2+bx+c=0(a≠0)的根,则以为根的一元二次方程为_____.
如图,已知在中,CD是AB边上的高,BE平分,交CD于点E,,,则的面积等于______.
计算:
(1)
(2)
(3)
(4)[ 2- ()×24 ]÷5×(- 1)2001
(5)
(6) -22 -(-1)2001×(- )÷+(-3)2
校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向南走了70米,此时张明的位置在( )
A. 在家 B. 在学校 C. 在书店 D. 不在上述地方
(1)解方程:2x2+x﹣6=0;
(2)阅读理【解析】为解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我们可以将x2﹣1视为一个整体,然后设x2﹣1=y,则原方程化为y2﹣5y+4=0,解此方程得:y1=1,y2=4.当y=1时,x2﹣1=1,x=±;当y=4时,x2﹣1=4,∴x=±
∴原方程的解为:x1=,x2=﹣,x2=,x1=﹣
以上方法叫做换元法解方程,达到了降次的目的,体现了转化思想.
运用上述方法解方程:x4﹣8x2+12=0.
如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=54°,则∠BAD=_____.
如图,点A,B,C均在坐标轴上,AO=BO=CO=1,过A,O,C作⊙D,E是⊙D上任意一点,连结CE,BE,则CE2+BE2的最大值是( )
A. 4 B. 5 C. 6 D. 4+
如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=2.点P是△ABC内部的一个动点,且满足∠PAC=∠PCB,则线段BP长的最小值是_____.
在平面直角坐标系xOy中,直线AB交y轴于A点,交X轴于B点,A(0,6),B(6,0).点D是线段BO上一点,BN⊥AD交AD的延长线于点N.
(1)如图,若OM∥BN交AD于点M.点O作0G⊥BN,交BN的延长线于点G,求证:AM=BG
(2)如图,若∠ADO=67.5°,OM∥BN交AD于点M,交AB于点Q,求的值.
(3)如图,若OC∥AB交BN的延长线于点C.请证明:∠CDN+2∠BDN=180°.