题目内容

【题目】如图,△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于F,交BC于E,点G为AB的中点,连接DG,交AE于点H,

(1)求∠ACB的度数;
(2)HE= AF.

【答案】
(1)解:∵AB=AC,

∴∠ACB=∠ABC,

∵∠BAC=45°,

∴∠ACB=∠ABC= (180°﹣∠BAC)= (180°﹣45°)=67.5°


(2)解:连结HB,

∵AB=AC,AE平分∠BAC,

∴AE⊥BC,BE=CE,

∴∠CAE+∠C=90°,

∵BD⊥AC,

∴∠CBD+∠C=90°,

∴∠CAE=∠CBD,

∵BD⊥AC,D为垂足,

∴∠DAB+∠DBA=90°,

∵∠DAB=45°,

∴∠DBA=45°,

∴∠DBA=∠DAB,

∴DA=DB,

在Rt△BDC和Rt△ADF中,

∴Rt△BDC≌Rt△ADF (ASA),

∴BC=AF,

∵DA=DB,点G为AB的中点,

∴DG垂直平分AB,

∵点H在DG上,

∴HA=HB,

∴∠HAB=∠HBA= ∠BAC=22.5°,

∴∠BHE=∠HAB+∠HBA=45°,

∴∠HBE=∠ABC﹣∠ABH=67.5°﹣22.5°=45°,

∴∠BHE=∠HBE,

∴HE=BE= BC,

∵AF=BC,

∴HE= AF


【解析】(1)根据等腰三角形性质和三角形内角和定理求出即可;(2)证△ADF≌△BDC,推出AF=BC,求出HE=BE=CE,即可得出答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网