题目内容

阅读下面材料:
设一元二次方程ax2+bx+c=0的两根为x1、x2,则两根与方程中各系数之间有如下关系:x1+x2=-
b
a
x1x2=
c
a

根据该材料解答下列问题:已知a、b是方程x2+6x-3=0的两个实数根;
(1)则a+b=
 
,a•b=
 

(2)求
a
b
+
b
a
的值.
分析:(1)利用根与系数的关系可求出a+b,ab的值;
(2)先把
a
b
+
b
a
通分,然后把a+b,ab的值整体代入即可求值.
解答:解:(1)a+b=-
6
1
=-6,a•b=
-3
1
=-3,
(2)
a
b
+
b
a
=
a2+b2
ab
=
(a+b)2-2ab
ab
=
(-6)2-2×(-3)
-3
=-14.
点评:一元二次方程的两个根x1、x2具有这样的关系:x1+x2=-
b
a
,x1•x2=
c
a
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网