题目内容
一个圆柱体钢块,正中央被挖去了一个长方体孔,其俯视图如图所示,则此圆柱体钢块的左视图是( )
A. B. C. D.
某校班际篮球联赛中,每场比赛都有胜负,每队胜1场得3分,负1场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?
如图,过点的一次函数的图像与正比例函数的图像相交于点,能表示这个一次函数图像的方程是( )
A. B.
C. D.
若,则的值为_____.
已知x﹣3y=0,且y≠0,则(1+)•的值等于( )
A. 2 B. C. D. 3
如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C(0,2)
(1)求抛物线的表达式;
(2)抛物线的对称轴与x轴交于点M,点D与点C关于点M对称,试问在该抛物线的对称轴上是否存在点P,使△BMP与△ABD相似?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.
如图,点D为△ABC边AB上一点,请用尺规过点D,作△ADE,使点E在AC上,且△ADE与△ABC相似(保留作图痕迹,不写作法)
如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:
(1)动点P从点A运动至C点需要多少时间?
(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;
(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.
定义新运算“”,规定,则__________.