题目内容

若关于x的函数y=(a-3)x2-(4a-1)x+4a的图象与坐标轴有两个交点,则a的值为(  )
A.3或0B.a>-
1
40
且a≠3
C.0或-
1
40
D.3或0或-
1
40
因为关于x的函数y=(a-3)x2-(4a-1)x+4a的图象与坐标轴只有两个交点,即与x轴、y轴各有一个交点.
所以此函数若为二次函数,则b2-4ac=[-(4a-1)]2-4(a-3)×4a=0,
即40a+1=0,
解得:a=-
1
40

若a=0,二次函数图象过原点,满足题意.
若此函数为一次函数,则a-3=0,所以a=3.
所以若关于x的函数y=(a-3)x2-(4a-1)x+4a的图象与坐标轴只有两个交点,则a=3或0或-
1
40

故选:D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网