题目内容
(2009•赤峰)如图,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC的度数是( )A.10°
B.20°
C.30°
D.40°
【答案】分析:连接BC,OB,根据圆周角定理先求出∠C,再求∠BAC.
解答:解:连接BC,OB,
AC是直径,则∠ABC=90°,
PA、PB是⊙O的切线,A、B为切点,则∠OAP=∠OBP=90°,
∴∠AOB=180°-∠P=140°,
由圆周角定理知,∠C=∠AOB=70°,
∴∠BAC=90°-∠C=20°.
故选B.
点评:本题利用了直径对的圆周角是直角,切线的概念,圆周角定理,四边形内角和定理求解.
解答:解:连接BC,OB,
AC是直径,则∠ABC=90°,
PA、PB是⊙O的切线,A、B为切点,则∠OAP=∠OBP=90°,
∴∠AOB=180°-∠P=140°,
由圆周角定理知,∠C=∠AOB=70°,
∴∠BAC=90°-∠C=20°.
故选B.
点评:本题利用了直径对的圆周角是直角,切线的概念,圆周角定理,四边形内角和定理求解.
练习册系列答案
相关题目