题目内容
【题目】如图,△ABC中,已知AB=AC,D是AC上的一点,CD=9,BC=15,BD=12.
(1)判断△BCD的形状并证明你的结论.
(2)求△ABC的面积.
【答案】(1)见解析;(2)75
【解析】
(1)利用勾股定理的逆定理即可直接证明△BCD是直角三角形;
(2)设AD=x,则AC=x+9,在直角△ABD中,利用勾股定理即可列出方程,解方程,即可求解.
(1)∵CD=9,BD=12
∴CD2+BD2=81+144=225
∵BC=15
∴BC2=225
∴CD2+BD2=BC2
∴△BCD是直角三角形
(2)设AD=x,则AC=x+9
∵AB=AC
∴AB=x+9
∵∠BDC=90°
∴∠ADB=90°
∴AB2=AD2+BD2
即(x+9)2=x2+122
解得:x=
∴AC=+9=
∴S△ABC=ACBD==75
故答案为:75
练习册系列答案
相关题目