题目内容
【考点】全等三角形的判定与性质;直角梯形;旋转的性质.
【分析】过A作AN⊥BC于N,过E作EM⊥AD,交DA延长线于M,得出四边形ANCD是矩形,推出∠DAN=90°=∠ANB=∠MAN,AD=NC=5,AN=CD,求出BN=4,求出∠EAM=∠NAB,证△EAM≌△BNA,求出EM=BN=4,根据三角形的面积公式求出即可.
【解答】过A作AN⊥BC于N,过E作EM⊥AD,交DA延长线于M,
∵AD∥BC,∠C=90°,
∴∠C=∠ADC=∠ANC=90°,
∴四边形ANCD是矩形,
∴∠DAN=90°=∠ANB=∠MAN,AD=NC=5,AN=CD,
∴BN=9-5=4,
∵∠M=∠EAB=∠MAN=∠ANB=90°,
∴∠EAM+∠BAM=90°,∠MAB+∠NAB=90°,
∴∠EAM=∠NAB,
∵在△EAM和△BNA中,∠M=∠ANB;∠EAM=∠BAN;AE=AB,
∴△EAM≌△BNA(AAS),
∴EM=BN=4,
∴△ADE的面积是×AD×EM=×5×4=10.
故选A.
【点评】本题考查了矩形的性质和判定,三角形的面积,全等三角形的性质和判定,主要考查学生运用定理和性质进行推理的能力,题目比较好,难度适中.
如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长DE到H使DE=BM,连接AM、AH。则以下四个结论:①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形;④S四边形ABMD=AM2。其中正确结论的个数是
A.1 B.2 C.3 D.4
练习册系列答案
相关题目