题目内容

 如图,点在抛物线上,过点作与轴平行的直线交抛物线于点,延长分别与抛物线相交于点,连接,设点的横坐标为,且

 (1).当时,求点的坐标;

 

 (2).当为何值时,四边形的两条对角线互相垂直;

(3).猜想线段之间的数量关系,并证明你的结论.

 

【答案】

解:(1在抛物线上,且,······························ 1分

    与点关于轴对称,.························································ 2分

    设直线的解析式为

    .······················································································· 3分

    解方程组,得.································································· 4分

(2)当四边形的两对角线互相垂直时,由对称性得直线轴的夹角等于所以点的横、纵坐标相等,      5分

    这时,设,代入,得

    即当时,四边形的两条对角线互相垂直.········································· 6分

(3)线段.········································································································ 7分

    在抛物线,且

    得直线的解析式为

    解方程组,得点······················································· 8分

    由对称性得点,··················································· 9分

   

    .                                                        10分

 

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网