题目内容
如图,身高1.5米的小强站在离一个高大的建筑物20米处,他的前方5米有一堵墙,若墙高2米,则站立的小强观察这个建筑物时,盲区的范围________米(建筑物上的高度).
在同一时刻,某人身高,影长,一塔的影长,则这座塔高________.
如图,已知直角坐标系中一条圆弧经过正方形网格的格点、、.若点的坐标为,点的坐标为,
圆弧所在圆的圆心点的坐标为________
点是否在经过点、、三点的抛物线上;
在的条件下,求证:直线是的切线.
二次函数的图象如图所示,对称轴是直线,有以下结论:①;②;③;④.其中正确的结论的个数是( )
A. 1 B. 2 C. 3 D. 4
小强为测量一路灯杆AB的高度,在灯光下,小强在C处的影长为3米,沿BC方向行走了5米到E处,此时小强的影长为5米,若小强身高为1.7米,求路灯杆AB的高度。
当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小_____.
如图是某几何体的三视图及相关数据,则下列式子正确的是( )
A. a2+b2=c2 B. a2+b2=4c2 C. a2+c2=b2 D. a2+4c2=b2
如图,在的方格纸中,将如图①的三角形甲平移到如图②所示的位置,与三角形乙拼成一个长方形.正确的平移方法,可以先将甲向下平移格,再向________平移________格得到.
如图,在等腰直角△ABC中,∠C是直角,点A在直线MN上,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.
(1)如图1,当C,B两点均在直线MN的上方时,
①直接写出线段AE,BF与CE的数量关系.
②猜测线段AF,BF与CE的数量关系,不必写出证明过程.
(2)将等腰直角△ABC绕着点A顺时针旋转至图2位置时,线段AF,BF与CE又有怎样的数量关系,请写出你的猜想,并写出证明过程.
(3)将等腰直角△ABC绕着点A继续旋转至图3位置时,BF与AC交于点G,若AF=3,BF=7,直接写出FG的长度.