题目内容

(2013•聊城)已知△ABC中,边BC的长与BC边上的高的和为20.
(1)写出△ABC的面积y与BC的长x之间的函数关系式,并求出面积为48时BC的长;
(2)当BC多长时,△ABC的面积最大?最大面积是多少?
(3)当△ABC面积最大时,是否存在其周长最小的情形?如果存在,请说出理由,并求出其最小周长;如果不存在,请给予说明.
分析:(1)先表示出BC边上的高,再根据三角形的面积公式就可以表示出表示y与x之间的函数关系式,当y=48时代入解析式就可以求出其值;
(2)将(1)的解析式转化为顶点式就可以求出最大值.
(3)由(2)可知△ABC的面积最大时,BC=10,BC边上的高也为10过点A作直线L平行于BC,作点B关于直线L的对称点B′,连接B′C 交直线L于点A′,再连接A′B,AB′,根据轴对称的性质及三角形的周长公式就可以求出周长的最小值.
解答:解:(1)由题意,得
y=
x(20-x)
2
=-
1
2
x2+10x,
当y=48时,-
1
2
x2+10x=48,
解得:x1=12,x2=8,
∴面积为48时,BC的长为12或8;

(2)∵y=-
1
2
x2+10x,
∴y=-
1
2
(x-10)2+50,
∴当x=10时,y最大=50;

(3)△ABC面积最大时,△ABC的周长存在最小的情形.理由如下:
由(2)可知△ABC的面积最大时,BC=10,BC边上的高也为10
过点A作直线L平行于BC,作点B关于直线L的对称点B′,
连接B′C 交直线L于点A′,再连接A′B,AB′
则由对称性得:A′B′=A′B,AB′=AB,
∴A′B+A′C=A′B′+A′C=B′C,
当点A不在线段B′C上时,则由三角形三边关系可得:
△ABC的周长=AB+AC+BC=AB′+AC+BC>B′C+BC,
当点A在线段B′C上时,即点A与A′重合,这时△ABC的周长=AB+AC+BC=A′B′+A′C+BC=B′C+BC,
因此当点A与A′重合时,△ABC的周长最小;
这时由作法可知:BB′=20,∴B′C=
202+102
=10
5
,∴△ABC的周长=10
5
+10,
因此当△ABC面积最大时,存在其周长最小的情形,最小周长为10
5
+10.
点评:本题是一道二次函数的综合试题,考查了二次函数的解析式的运用,一元二次方程的解法和顶点式的运用,轴对称的性质的运用,在解答第三问时灵活运用轴对称的性质是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网