题目内容
【题目】抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.
(1)直接写出抛物线L的解析式;
(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;
(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.
【答案】(1)y=﹣x2+2x+1;(2)-3;(3)当m=2﹣1时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0,1)和(0,2).
【解析】
(1)根据对称轴为直线x=1且抛物线过点A(0,1)利用待定系数法进行求解可即得;
(2)根据直线y=kx﹣k+4=k(x﹣1)+4知直线所过定点G坐标为(1,4),从而得出BG=2,由S△BMN=S△BNG﹣S△BMG=BGxN﹣BGxM=1得出xN﹣xM=1,联立直线和抛物线解析式求得x=,根据xN﹣xM=1列出关于k的方程,解之可得;
(3)设抛物线L1的解析式为y=﹣x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再设P(0,t),分△PCD∽△POF和△PCD∽△POF两种情况,由对应边成比例得出关于t与m的方程,利用符合条件的点P恰有2个,结合方程的解的情况求解可得.
(1)由题意知,解得:,
∴抛物线L的解析式为y=﹣x2+2x+1;
(2)如图1,设M点的横坐标为xM,N点的横坐标为xN,
∵y=kx﹣k+4=k(x﹣1)+4,
∴当x=1时,y=4,即该直线所过定点G坐标为(1,4),
∵y=﹣x2+2x+1=﹣(x﹣1)2+2,
∴点B(1,2),
则BG=2,
∵S△BMN=1,即S△BNG﹣S△BMG=BG(xN﹣1)-BG(xM-1)=1,
∴xN﹣xM=1,
由得:x2+(k﹣2)x﹣k+3=0,
解得:x==,
则xN=、xM=,
由xN﹣xM=1得=1,
∴k=±3,
∵k<0,
∴k=﹣3;
(3)如图2,
设抛物线L1的解析式为y=﹣x2+2x+1+m,
∴C(0,1+m)、D(2,1+m)、F(1,0),
设P(0,t),
(a)当△PCD∽△FOP时,,
∴,
∴t2﹣(1+m)t+2=0①;
(b)当△PCD∽△POF时,,
∴,
∴t=(m+1)②;
(Ⅰ)当方程①有两个相等实数根时,
△=(1+m)2﹣8=0,
解得:m=2﹣1(负值舍去),
此时方程①有两个相等实数根t1=t2=,
方程②有一个实数根t=,
∴m=2﹣1,
此时点P的坐标为(0,)和(0,);
(Ⅱ)当方程①有两个不相等的实数根时,
把②代入①,得:(m+1)2﹣(m+1)+2=0,
解得:m=2(负值舍去),
此时,方程①有两个不相等的实数根t1=1、t2=2,
方程②有一个实数根t=1,
∴m=2,此时点P的坐标为(0,1)和(0,2);
综上,当m=2﹣1时,点P的坐标为(0,)和(0,);
当m=2时,点P的坐标为(0,1)和(0,2).